N-acetylcysteine protects induced pluripotent stem cells from in vitro stress: impact on differentiation outcome.

نویسندگان

  • Ina Berniakovich
  • Leopoldo Laricchia-Robbio
  • Juan Carlos Izpisua Belmonte
چکیده

Induced pluripotent stem cells (iPSCs) have the ability to differentiate towards various cell types of the adult organism and are a potential source of transplantable material in regenerative medicine. The entire process of conversion of iPSCs into terminally differentiated cells takes place in vitro and requires long periods of time. During in vitro culture, cells are exposed to environmental factors, which are capable of decreasing cellular performance and viability. Oxidative stress is the major underlying mechanism of such negative impact of in vitro environmental factors. We aimed to study the alteration of cellular properties during in vitro hematopoietic differentiation of human iPSCs and the ability of N-acetylcysteine (NAC), a potent free radical scavenger, to prevent such alterations. IPSCs were differentiated towards hematopoietic cells in the presence of 1 mM NAC. Intracellular reactive oxygen species (ROS), nitric oxide (NO), senescence, apoptosis and mitochondrial membrane potential (MMP) were evaluated at 1 and 3 weeks of differentiation. In the course of hematopoietic differentiation of iPSCs, cells progressively accumulated intracellular ROS and NO, increased the levels of apoptosis and senescence, and showed a decrease in mitochondrial functionality. NAC supplementation reversed all these phenomena. NAC administration also improved hematopoietic differentiation of iPSCs in terms of production of CD34, CD45 and CD43 positive cells. In conclusion, when supplemented during hematopoietic differentiation of iPSCs, NAC decreased oxidative stress, rescued the decline in cellular properties induced by long-term in vitro culture and promoted hematopoietic differentiation of iPSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells

Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

I-54: New Models for Human and Mouse Genetic

The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of developmental biology

دوره 56 9  شماره 

صفحات  -

تاریخ انتشار 2012